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Abstract

The second-order harmonic balance method is used to construct three approximate frequency–amplitude relations for a

conservative nonlinear singular oscillator in which the restoring force is inversely proportional to the dependent variable.

Two procedures are used to solve the nonlinear differential equation approximately. In the first the differential equation is

rewritten in a form that does not contain the y�1 expression, while in the second the differential equation is solved directly.

The approximate frequency obtained using the second procedure is more accurate than the frequency obtained with the

first one and the discrepancy between the approximate frequency and the exact one is lower than 1.28%.

r 2008 Elsevier Ltd. All rights reserved.
Mickens [1] has recently analyzed the nonlinear differential equation [2]

d2y

dt2
þ

1

y
¼ 0, (1)

with initial conditions

yð0Þ ¼ A;
dy

dt

� �
t¼0

¼ 0. (2)

Mickens has also shown that all the motions corresponding to Eq. (1) are periodic [1,3]; the system
will oscillate within symmetric bounds [�A, A], and the angular frequency and corresponding periodic
solution of the nonlinear oscillator are dependent on the amplitude A. Integration of Eq. (1) gives the first
integral

1

2

dy

dt

� �2

þ log y ¼ log A, (3)
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where the integration constant was evaluated using the initial conditions of Eq. (2). From Eq. (3), the
expression for the exact period, Tex(A), for the nonlinear oscillator given by Eq. (1) taking into account the
initial conditions in Eq. (2) is

T exðAÞ ¼ 4

Z A

0

dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 logðA=yÞ

p . (4)

The transformation y ¼ Aet2 reduces this equation to the form

T exðAÞ ¼ 4
ffiffiffi
2
p

A

Z 1
0

e�t2 dt ¼ 4
ffiffiffi
2
p

A

ffiffiffi
p
p

2
¼ 2

ffiffiffiffiffiffi
2p
p

A. (5)

From Eq. (5), the exact value for the angular frequency is given by the expression

oexðAÞ ¼
2p

T exðAÞ
¼

2p

2
ffiffiffiffiffiffi
2p
p

A
¼

ffiffiffiffiffiffi
2p
p

2A
¼

1:2533141

A
. (6)

It is difficult to solve nonlinear differential equations and, in general, it is often more difficult to obtain an
analytic approximation than a numerical one for a given nonlinear oscillatory system [3,4]. There are many
approaches for approximating solutions to nonlinear oscillatory systems. The most widely studied
approximation methods are the perturbation methods [5]. The simplest and perhaps one of the most useful
of these approximation methods is the Lindstedt–Poincaré perturbation method, whereby the solution is
analytically expanded in the power series of a small parameter [3]. To overcome this limitation, many new
perturbative techniques have been developed. Modified Lindstedt–Poincaré techniques [6–8], the homotopy
perturbation method [9–15] or linear delta expansion [16–18] are only some examples of them. A recent
detailed review of asymptotic methods for strongly nonlinear oscillators can be found in Ref. [4]. The
harmonic balance method is another procedure for determining analytical approximations to the periodic
solutions of differential equations by using a truncated Fourier series representation [3,19–25]. This method
can be applied to nonlinear oscillatory systems where the nonlinear terms are not small and no perturbation
parameter is required.

The main objective of this paper is to approximately solve Eq. (1) by applying the harmonic balance
method, and to compare the approximate frequency obtained with the exact one and with another
approximate frequency obtained applying the harmonic balance method to the same oscillatory system but
rewriting Eq. (1) in a way suggested previously by Mickens [1]. The approximate frequency derived here is
more accurate and closer to the exact solution. The error in the resulting frequency is reduced and the
maximum relative error is less than 1.3% for all values of A.

In order to approximately solve Eq. (1), Mickens has rewritten this equation in a form that does not contain
the y�1 expression [1]

y
d2y

dt2
þ 1 ¼ 0; yð0Þ ¼ A;

dy

dt

� �
t¼0

¼ 0. (7)

It is possible to solve Eq. (7) by applying the harmonic balance method. Following the lowest order
harmonic balance method, a reasonable and simple initial approximation satisfying the conditions in Eq. (7)
would be

y1ðtÞ ¼ A cos ot. (8)

The substitution of Eq. (8) into Eq. (7) gives

�A2o2 cos2otþ 1 ¼ 0, (9)

then expanding and simplifying the resulting expression gives

�1
2
A2o2 þ 1þ ðhigher-order harmonicsÞ ¼ 0 (10)
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and the solution for the angular frequency, oM1ðAÞ, is

oM1ðAÞ ¼

ffiffiffi
2
p

A
¼

1:414214

A
(11)

and the percentage error of this approximate frequency in relation to the exact one is

percentage error ¼
oex � oM1

oex

����
����� 100 ¼ 12:8%. (12)

Mickens [1] also used the second-order harmonic balance approximation

y2ðtÞ ¼ A2 cos otþ B2 cos
3 ot (13)

to the periodic solution of Eq. (7). Substitution of Eq. (13) into Eq. (7), simplifying the resulting expression
and equating the coefficients of the lowest harmonics to zero give two equations and taking into account that
A ¼ A2+B2, Mickens [1] obtained A2 ¼ 10A/9 and B2 ¼ �A/9, and the second-order approximate solution
(Eq. (13)) to Eq. (7) can be written as follows:

yM2ðtÞ ¼
10

9
A cosðoM2tÞ �

1

9
A cosð3oM2tÞ, (14)

where the second-order approximate frequency, oM2ðAÞ, is given by

oM2ðAÞ ¼

ffiffiffiffiffiffiffiffi
162
p

10A
¼

1:272792

A
(15)

and the percentage error is

percentage error ¼
oex � oM2

oex

����
����� 100 ¼ 1:55%. (16)

As we pointed out previously, the main objective of this paper is to solve Eq. (1) instead of Eq. (7) by
applying the harmonic balance method. Substitution of Eq. (8) into Eq. (1) gives

�Ao2 cos otþ
1

A cos ot
¼ 0. (17)

In order to apply the first-order harmonic balance method to Eq. (17) we have to expand Eq. (17) and set
the coefficient of cosot (the lowest order harmonic) equal to zero. For this, firstly we expand 1/A cosot as a
Fourier series expansion:

1

A cos ot
¼
X1
n¼0

a2nþ1 cos½ð2nþ 1Þot� ¼ a1 cos otþ a3 cos
3otþ � � � , (18)

where the first term of this expansion can be obtained by means of the following equation:

a1 ¼
4

p

Z p=2

0

1

A cos y
cos ydy ¼

2

A
. (19)

Substituting Eq. (18) into Eq. (17) and taking into account Eq. (19) gives

�o2 þ
2

A

� �
cos otþ ðhigher-order harmonicsÞ ¼ 0. (20)

For the lowest order harmonic to be equal to zero, it is necessary to set the coefficient of coswt equal to zero
in Eq. (20), then

o1ðAÞ ¼

ffiffiffi
2
p

A
¼

1:4142

A
. (21)

Consequently, in this limit, the low-order harmonic balance method applied to Eq. (1) gives exactly the
same results as the low-order harmonic balance method applied to Eq. (7).
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In order to obtain the next level of harmonic balance, we express the periodic solution to Eq. (1) with the
assigned conditions in Eq. (2) in the form of [19–22]

y2ðtÞ ¼ y1ðtÞ þ uðtÞ, (22)

where u(t) is the correction part, which is a periodic function of t of period 2p/o and

uð0Þ ¼ 0;
du

dt

� �
t¼0

¼ 0. (23)

Substituting Eq. (22) into Eq. (1) gives

d2y1

dt2
þ

d2u

dt2
þ

1

y1ðtÞ þ uðtÞ
¼ 0. (24)

Wu and Lim [19–21] presented an approach by combining the harmonic balance method and the linearization
of nonlinear oscillation equation with respect to displacement increment only, u(t). This harmonic balance
approach will be used to approximately solve Eq. (24). Linearizing the governing equation (24) with respect to
the correction u(t) at y1(t) leads to

d2y1

dt2
þ

d2u

dt2
þ

1

y1ðtÞ
�

uðtÞ

y2
1ðtÞ
¼ 0 (25)

and

uð0Þ ¼ 0;
du

dt

� �
t¼0

¼ 0. (26)

To obtain the second approximation to the solution, u(t), in Eq. (22), which must satisfy the initial
conditions in Eq. (26), we take into account the second-order harmonic balance approximation in Eq. (13),
which can be written as follows:

y2ðtÞ ¼ A2 cos otþ B2 cos
3ot ¼ A cos ot� B2 cos otþ B2 cos

3 ot ¼ A cos otþ B2ðcos
3 ot� cos otÞ,

(27)

where we have taken into account that A ¼ A2+B2. From Eqs. (8), (22) and (27) we can see that u(t) takes the
form

uðtÞ ¼ B2ðcos
3ot� cos otÞ, (28)

where B2 is a constant to be determined.
Substituting Eqs. (22), (8) and (28) into Eq. (25), expanding the expression in a trigonometric series and

setting the coefficients of the terms cosot and cos 3ot equal to zero, respectively, leads to

�ðA� B2Þo2 þ
2

A2
ðAþ 2B2Þ ¼ 0 (29)

and

�2A� 8B2 � 9B2A
2o2

A2
¼ 0. (30)

From Eqs. (29) and (30) we can obtain B2 and o2 as follows:

BWL2 ¼
A

14
ð
ffiffiffiffiffi
22
p
� 6Þ ¼ �0:093542A, (31)

oWL2ðAÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Aþ 8BWL2

�9BWL2A2

s
¼

1:2193273

A
. (32)
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With this value for B2, Eq. (27) can be written as

yWL2ðtÞ ¼
20�

ffiffiffiffiffi
22
p

14
A cosðoWL2tÞ þ

ffiffiffiffiffi
22
p
� 6

14
A cosð3oWL2tÞ. (33)

The percentage error for the second-order approximate frequency is

percentage error ¼
oex � oWL2

oex

����
����� 100 ¼ 2:71%, (34)

which is higher than the percentage error for the second approximate frequency obtained by Mickens when the
harmonic balance method is applied to Eq. (7).

Substitution of Eq. (22) into Eq. (1) does not give the same result as substitution of Eq. (8) into Eq. (7) and
application of the second-order harmonic balance method to Eq. (7) gives a more accurate frequency than
application of Wu and Lim’s approach to Eq. (1). These questions have been analyzed in detail in Refs. [23,25]
for other oscillators analyzed by the first-order harmonic balance method and one would wait to obtain better
results when the harmonic balance method is applied to Eq. (1) instead of to Eq. (7). This would be due to the
fact that when we substitute Eq. (13) into Eq. (7) we obtain an equation that includes only three even powers
of cosot: 1 (cos0ot), cos2ot and cos4ot and then there are only three contributions to the coefficient of the
first term 1 (cos0ot), from 1 (cos0ot), cos2ot and cos4ot, and two contributions to the coefficient of the
second harmonic cos(2ot), from cos2ot and cos4ot, Therefore, substituting Eq. (13) into Eq. (7) produces
only three terms, 1, cos(2ot) and cos(4ot). However, Eq. (17) includes all odd powers of cosot, which are
cos2n+1ot with n ¼ 0, 1, 2,y,N, and then there are infinite contributions to the coefficient of the first

harmonic cosot, that is, 1 from cosot, 3/4 from cos3ot, 5/8 from cos5ot; . . . ; 2�2n
2nþ 1

n

� �
from cos2nþ1ot,

and so on. Therefore, substituting Eq. (27) into Eq. (1) produces the infinite set of higher harmonics, cosot,
cos 3ot,y,cos[(2n+1)ot], and so on, and the second-order angular frequency in Eq. (32) would have to be
more accurate than the frequency given in Eq. (15). But we obtained the opposite result. The reason is that we
have not applied the exact second-harmonic balance method to Eq. (1), but a linearized approximation to this
method.

In order to verify this affirmation, we consider a new approach to obtain higher-order approximations using
the harmonic balance method. Instead of considering the assumption in Eq. (25), first we use the following
series expansion:

1

y1ðtÞ þ uðtÞ
¼

1

y1ðtÞ½1þ y�11 ðtÞuðtÞ�
¼
X1
n¼0

ð�1Þn
unðtÞ

ynþ1
1 ðtÞ

(35)

and substituting Eq. (35) into Eq. (1) gives

d2y1

dt2
þ

d2u

dt2
þ
X1
n¼0

ð�1ÞnunðtÞ

ynþ1
1 ðtÞ

¼ 0. (36)

To obtain the second approximation to the solution, u(t), in Eq. (22), which must satisfy the initial
conditions in Eq. (23), takes the form

uðtÞ ¼ B2ðcos 3ot� cos otÞ ¼ 4B2ðcos
3ot� cos otÞ, (37)

where c2 is a constant to be determined.
Substituting Eqs. (8), (22) and (37) into Eq. (36) gives

�o2ðA� B2Þ cos ot� 9o2B2 cos 3otþ
X1
n¼0

4nBn
2ð1� cos2otÞn

Anþ1 cos ot
¼ 0. (38)

The formula that allows us to obtain ð1� cos2 otÞn is

ð1� cos2 otÞn ¼
Xn

k¼0

n

k

� �
ð�cos2 otÞk ¼

Xn

k¼0

ð�1Þkn!

k!ðn� kÞ!
cos2k ot. (39)
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Substituting Eq. (39) into Eq. (38) gives

�o2ðA� B2Þ cos otþ 9o2B2 cos 3otþ
X1
n¼0

4nn!Bn
2

Anþ1

Xn

k¼0

ð�1Þk

k!ðn� kÞ!
cos2k�1ot ¼ 0. (40)

It is possible to state the following Fourier series expansion:

cos2k�1ot ¼
X1
j¼0

b
ðkÞ
2jþ1 cos½ð2j þ 1Þot� ¼ b

ðkÞ
1 cos otþ b

ðkÞ
3 cos 3otþ � � � , (41)

where

b
ðkÞ
2jþ1 ¼

4

p

Z 1=2

0

cos2k�1 y cos½ð2j þ 1Þy�dy ¼
2ðk � 1Þ!Gðk þ 1

2
Þffiffiffi

p
p
ðk � j � 1Þ!ðj þ kÞ!

(42)

and where G(z) is the Euler gamma function [26].
Substituting Eqs. (41) and (42) into Eq. (40), we obtain

� o2ðA� B2Þ cos ot� 9o2B2 cos 3ot

þ
X1
n¼0

4nn!Bn
2

Anþ1

Xn

k¼0

ð�1Þk

k!ðn� kÞ!

Xk

j¼0

2ðk � 1Þ!Gðk þ 1
2
Þffiffiffi

p
p
ðk � j � 1Þ!ðj þ kÞ!

cos½ð2j þ 1Þot� ¼ 0 (43)

and setting the coefficients of the resulting items cosot (j ¼ 0) and cosot (j ¼ 1) equal to zero, respectively,
yields

�o2ðA� B2Þ þ
X1
n¼0

4nn!Bn
2

Anþ1

Xn

k¼0

ð�1Þk2Gðk þ 1
2
Þffiffiffi

p
p
ðk!Þ2ðn� kÞ!

¼ 0, (44)

�9o2B2 þ
X1
n¼0

4nn!Bn
2

Anþ1

Xn

k¼0

ð�1Þk2ðk � 1ÞGðk þ 1
2
Þffiffiffi

p
p

k!ðk þ 1Þ!ðn� kÞ!
¼ 0, (45)

which can be written as follows:

�o2ðA� B2Þ þ
2

A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A

A� 4B2

r
¼ 0, (46)

�9o2B2 þ
2Aþ 2B2 � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � 4AB2

p
B2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � 4AB2

p ¼ 0. (47)

In Eq. (47) the following relations have to be taken into account:

Xn

k¼0

ð�1Þk2Gðk þ 1
2
Þffiffiffi

p
p
ðk!Þ2ðn� kÞ!

¼
2Gðk þ 1

2
Þffiffiffi

p
p
ðn!Þ2

, (48)

X1
n¼0

4nn!Bn
2

Anþ1

2Gðk þ 1
2
Þffiffiffi

p
p
ðn!Þ2

¼
2

A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A

A� 4B2

r
, (49)

while in Eq. (48) the following expressions have been considered:

Xn

k¼0

ð�1Þk2ðk � 1ÞGðk þ 1
2
Þffiffiffi

p
p

k!ðn� kÞ!ð1þ kÞ!
¼ �

2½Gðnþ 1
2
Þn!þ 2ðn� 1Þ!Gðnþ 3

2
Þ�ffiffiffi

p
p
ðnþ 1Þ!n!ðn� 1Þ!

, (50)

�
X1
n¼0

ð�1Þn4nn!cn
2

Anþ1

2½Gðnþ 1
2
Þn!þ 2ðn� 1Þ!Gðnþ 3

2
Þ�ffiffiffi

p
p
ðnþ 1Þ!n!ðn� 1Þ!

¼
�2Aþ 2B2 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � 4AB2

p
B2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � 4AB2

p . (51)

These results have been obtained using Mathematicas.
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From Eqs. (46) and (47) and once again by using Mathematicas we can obtain o2 and B2 as follows:

B2 ¼ �
A

50
ð2159þ 225

ffiffiffiffiffiffiffiffi
106
p

Þ
1=3
� 6�

89

ð2159þ 225
ffiffiffiffiffiffiffiffi
106
p

Þ
1=3

" #
¼ 0:10158074A, (52)

o2ðAÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

AðA� B2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A

A� 4AB2

rs
¼

1:237330058

A
. (53)

With this value for B2, Eq. (22) can be written as

y2ðtÞ ¼ 1:101581A cosðo2tÞ � 0:101581A cosð3o2tÞ. (54)

The percentage error for the second-order approximate frequency is

percentage error ¼
oex � o2

oex

����
����� 100 ¼ 1:275%. (55)

As we can see, this error is lower than the error obtained by Mickens (1.55%) and we can conclude this is the
percentage error obtained when the second-order harmonic balance method is exactly applied to Eq. (1).

The second-order harmonic balance method was used to obtain three approximate frequencies for a
nonlinear singular oscillator. The first approximate frequency, oM2, was obtained by rewriting the nonlinear
differential equation in a form that does not contain the y�1 term, while the second and the third ones, oWL2

and o2, were obtained by solving the nonlinear differential equation containing the y�1 term. The second-
order approximate frequency oWL2 is obtained by using the approach by Wu and Lim [19–21]. This approach
can be described as a linearisation of the harmonic balance method, and works pretty well for the chosen
problems. Because the harmonic balance method does not eliminate the secular terms systematically, it is
difficult to obtain second- and higher-order approximate solutions by the harmonic balance method. But this
approach eliminates this difficulty and may be applied to other nonlinear oscillators. We can conclude that
Eqs. (52) and (53) are valid for the complete range of oscillation amplitude, including the limiting cases of
amplitude approaching zero and infinity. Excellent agreement of the approximate frequencies with the exact
value was demonstrated, and discussed, and the discrepancy between the third approximate frequency, o2,
and the exact value never exceeds 1.28%. The approximate frequency, o2, derived here is the best frequency
that can be obtained using the first-order harmonic balance method, and the maximum relative error was
reduced as compared with the approximate frequencies oM2 and oWL2. Finally, we discussed the reason as to
why the accuracy of the approximate frequency, o2, is better than that of the frequency oM2 obtained by
Mickens. This reason is related to the number of harmonics that application of the second-order harmonic
balance method produces for each differential equation solved.

This work was supported by the ‘‘Ministerio de Educación y Ciencia’’, Spain, under project FIS2005-05881-
C02-02, and by the ‘‘Generalitat Valenciana’’, Spain, under project ACOMP/2007/020.
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